首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42888篇
  免费   3873篇
  国内免费   2297篇
工业技术   49058篇
  2024年   64篇
  2023年   546篇
  2022年   852篇
  2021年   1211篇
  2020年   1203篇
  2019年   1096篇
  2018年   1106篇
  2017年   1357篇
  2016年   1553篇
  2015年   1823篇
  2014年   2567篇
  2013年   2666篇
  2012年   2603篇
  2011年   3543篇
  2010年   2417篇
  2009年   2764篇
  2008年   2750篇
  2007年   3097篇
  2006年   2610篇
  2005年   2445篇
  2004年   1989篇
  2003年   1754篇
  2002年   1377篇
  2001年   1051篇
  2000年   915篇
  1999年   704篇
  1998年   606篇
  1997年   453篇
  1996年   364篇
  1995年   293篇
  1994年   259篇
  1993年   236篇
  1992年   179篇
  1991年   134篇
  1990年   105篇
  1989年   95篇
  1988年   66篇
  1987年   34篇
  1986年   39篇
  1985年   26篇
  1984年   30篇
  1983年   15篇
  1982年   16篇
  1981年   7篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1977年   8篇
  1975年   3篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
1.
Heparanase (Hpse) is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains. Its upregulated expression is implicated in tumor growth, metastasis and angiogenesis, thus making it an attractive target in cancer therapeutics. Currently, a few small molecule inhibitors have been reported to inhibit Hpse, with promising oral administration and pharmacokinetic (PK) properties. In the present study, a ligand-based pharmacophore model was generated from a dataset of well-known active small molecule Hpse inhibitors which were observed to display favorable PK properties. The compounds from the InterBioScreen database of natural (69,034) and synthetic (195,469) molecules were first filtered for their drug-likeness and the pharmacophore model was used to screen the drug-like database. The compounds acquired from screening were subjected to molecular docking with Heparanase, where two molecules used in pharmacophore generation were used as reference. From the docking analysis, 33 compounds displayed higher docking scores than the reference and favorable interactions with the catalytic residues. Complex interactions were further evaluated by molecular dynamics simulations to assess their stability over a period of 50 ns. Furthermore, the binding free energies of the 33 compounds revealed 2 natural and 2 synthetic compounds, with better binding affinities than reference molecules, and were, therefore, deemed as hits. The hit compounds presented from this in silico investigation could act as potent Heparanase inhibitors and further serve as lead scaffolds to develop compounds targeting Heparanase upregulation in cancer.  相似文献   
2.
Perfluorosulfonic acid ionomer membranes have been widely used as proton conducting membranes in various electrochemical processes such as polymer electrolyte fuel cells and water electrolysis. While their thermal stability has been studied by thermogravimetry and analysis of low molecular weight products, their decomposition mechanism is little understood. In this study a newly developed methodology of thermal desorption and pyrolysis in combination with direct analysis in real time mass spectrometry is applied for Nafion membrane. An ambient ionization source and a high-resolution time-of-flight mass spectrometer enabled unambiguous assignment of gaseous products. Thermal decomposition is initiated by side chain detachment above 350°C, which leaves carbonyls on the main chain at the locations of the side chains. Perfluoroalkanes are released above 400°C by main chain scission and their further decomposition products dominate above 500 °C. DFT calculation of reaction energies and barrier heights of model compounds support proposed decomposition reactions.  相似文献   
3.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
4.
Carbonic anhydrases (CAs) have been identified as ideal catalysts for CO2 sequestration. Here, we report the sequence and structural analyses as well as the molecular dynamics (MD) simulations of four γ-CAs from thermophilic bacteria. Three of these, Persephonella marina, Persephonella hydrogeniphila, and Thermosulfidibacter takaii originate from hydrothermal vents and one, Thermus thermophilus HB8, from hot springs. Protein sequences were retrieved and aligned with previously characterized γ-CAs, revealing differences in the catalytic pocket residues. Further analysis of the structures following homology modeling revealed a hydrophobic patch in the catalytic pocket, presumed important for CO2 binding. Monitoring of proton shuttling residue His69 (P. marina γ-CA numbering) during MD simulations of P. hydrogeniphila and P. marina’s γ-CAs (γ-PhCA and γ-PmCA), showed a different behavior to that observed in the γ-CA of Escherichia coli, which periodically coordinates Zn2+. This work also involved the search for hotspot residues that contribute to interface stability. Some of these residues were further identified as key in protein communication via betweenness centrality metric of dynamic residue network analysis. T. takaii’s γ-CA showed marginally lower thermostability compared to the other three γ-CA proteins with an increase in conformations visited at high temperatures being observed. Hydrogen bond analysis revealed important interactions, some unique and others common in all γ-CAs, which contribute to interface formation and thermostability. The seemingly thermostable γ-CA from T. thermophilus strangely showed increased unsynchronized residue motions at 423 K. γ-PhCA and γ-PmCA were, however, preliminarily considered suitable as prospective thermostable CO2 sequestration agents.  相似文献   
5.
6.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
7.
Ceramic lattice structures (CLSs) are used for construction in common and extreme environments because of the extraordinary properties of ceramics. In this study, we designed and additively manufactured CLSs with distinct structural parameters to explore their quasi-static and dynamic compressive behaviours in detail. It was demonstrated that both the relative density (?ρ) and inclination angle (ω) had a significant impact on the quasi-static and dynamic mechanical properties of the CLSs. Furthermore, the mathematical relationships between the quasi-static compressive properties, including quasi-static compressive strength (QS), quasi-static Young’s modulus (QY), and quasi-static energy absorption (QE), versus ?ρ and ω obeyed the Gibson–Ashby and Deshpande and Fleck models, respectively. It was revealed by experiment and simulation that as the stiffness increased, the quasi-static failure mode of the CLSs changed from a parallel-vertical-inclined mixed mode to a parallel-vertical mode. In addition, the relationship between the dynamic mechanical properties of the CLSs versus ?ρ and ω also followed the Gibson–Ashby and Deshpande and Fleck models. The exceptional dynamic increase factor indicated that CLSs are highly suitable for extreme environments. These findings will aid in the research and development of customised additively manufactured CLSs.  相似文献   
8.
The durability of metal plate proton exchange membrane fuel cell (PEMFC) stack is still an important factor that hinders its large-scale commercial application. In this paper, we have conducted a 1000 h durability test on a 1 kW metal plate PEMFC stack, and explored the degradation of the core components. After 1000 h of dynamic load cycles, the voltage decay percentage of the stack under the current densities of 1000 mA cm?2 is 5.67%. By analyzing the scanning electron microscopy (SEM) images, the surfaces of the metal plates are contaminated locally by organic matter precipitated from the membrane electrode assembly (MEA). The SEM images of the catalyst coated membrane (CCM) cross section indicate that the MEA has undergone severe degradation, including the agglomeration of the catalyst layer, and the thinning and perforation of the PEM. These are the main factors that cause the rapid increase in hydrogen crossover flow rate and performance decay of the PEMFC stack.  相似文献   
9.
Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.  相似文献   
10.
《水科学与水工程》2022,15(1):29-39
In this article, current research findings of local scour at offshore windfarm monopile foundations are presented. The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized, including the current-only condition, wave-only condition, combined wave-current condition, and complex dynamic condition. Furthermore, this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions. The weakness of existing researches and future prospects are also discussed. It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings. The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号